Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury.

Identifieur interne : 003C19 ( Main/Exploration ); précédent : 003C18; suivant : 003C20

Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury.

Auteurs : Satu Lyyra [États-Unis] ; Richard B. Meagher ; Tehryung Kim ; Andrew Heaton ; Paul Montello ; Rebecca S. Balish ; Scott A. Merkle

Source :

RBID : pubmed:17309680

Descripteurs français

English descriptors

Abstract

Eastern cottonwood (Populus deltoides Bartr. ex Marsh.) trees were engineered to express merA (mercuric ion reductase) and merB (organomercury lyase) transgenes in order to be used for the phytoremediation of mercury-contaminated soils. Earlier studies with Arabidopsis thaliana and Nicotiana tabacum showed that this gene combination resulted in more efficient detoxification of organomercurial compounds than did merB alone, but neither species is optimal for long-term field applications. Leaf discs from in vitro-grown merA, nptII (neomycin phosphotransferase) transgenic cottonwood plantlets were inoculated with Agrobacterium tumefaciens strain C58 carrying the merB and hygromycin resistance (hptII) genes. Polymerase chain reaction of shoots regenerated from the leaf discs under selection indicated an overall transformation frequency of 20%. Western blotting of leaves showed that MerA and MerB proteins were produced. In vitro-grown merA/merB plants were highly resistant to phenylmercuric acetate, and detoxified organic mercury compounds two to three times more rapidly than did controls, as shown by mercury volatilization assay. This indicates that these cottonwood trees are reasonable candidates for the remediation of organomercury-contaminated sites.

DOI: 10.1111/j.1467-7652.2006.00236.x
PubMed: 17309680


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury.</title>
<author>
<name sortKey="Lyyra, Satu" sort="Lyyra, Satu" uniqKey="Lyyra S" first="Satu" last="Lyyra">Satu Lyyra</name>
<affiliation wicri:level="2">
<nlm:affiliation>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA. satu.lyyra@iki.fi</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meagher, Richard B" sort="Meagher, Richard B" uniqKey="Meagher R" first="Richard B" last="Meagher">Richard B. Meagher</name>
</author>
<author>
<name sortKey="Kim, Tehryung" sort="Kim, Tehryung" uniqKey="Kim T" first="Tehryung" last="Kim">Tehryung Kim</name>
</author>
<author>
<name sortKey="Heaton, Andrew" sort="Heaton, Andrew" uniqKey="Heaton A" first="Andrew" last="Heaton">Andrew Heaton</name>
</author>
<author>
<name sortKey="Montello, Paul" sort="Montello, Paul" uniqKey="Montello P" first="Paul" last="Montello">Paul Montello</name>
</author>
<author>
<name sortKey="Balish, Rebecca S" sort="Balish, Rebecca S" uniqKey="Balish R" first="Rebecca S" last="Balish">Rebecca S. Balish</name>
</author>
<author>
<name sortKey="Merkle, Scott A" sort="Merkle, Scott A" uniqKey="Merkle S" first="Scott A" last="Merkle">Scott A. Merkle</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17309680</idno>
<idno type="pmid">17309680</idno>
<idno type="doi">10.1111/j.1467-7652.2006.00236.x</idno>
<idno type="wicri:Area/Main/Corpus">003C15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003C15</idno>
<idno type="wicri:Area/Main/Curation">003C15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003C15</idno>
<idno type="wicri:Area/Main/Exploration">003C15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury.</title>
<author>
<name sortKey="Lyyra, Satu" sort="Lyyra, Satu" uniqKey="Lyyra S" first="Satu" last="Lyyra">Satu Lyyra</name>
<affiliation wicri:level="2">
<nlm:affiliation>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA. satu.lyyra@iki.fi</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meagher, Richard B" sort="Meagher, Richard B" uniqKey="Meagher R" first="Richard B" last="Meagher">Richard B. Meagher</name>
</author>
<author>
<name sortKey="Kim, Tehryung" sort="Kim, Tehryung" uniqKey="Kim T" first="Tehryung" last="Kim">Tehryung Kim</name>
</author>
<author>
<name sortKey="Heaton, Andrew" sort="Heaton, Andrew" uniqKey="Heaton A" first="Andrew" last="Heaton">Andrew Heaton</name>
</author>
<author>
<name sortKey="Montello, Paul" sort="Montello, Paul" uniqKey="Montello P" first="Paul" last="Montello">Paul Montello</name>
</author>
<author>
<name sortKey="Balish, Rebecca S" sort="Balish, Rebecca S" uniqKey="Balish R" first="Rebecca S" last="Balish">Rebecca S. Balish</name>
</author>
<author>
<name sortKey="Merkle, Scott A" sort="Merkle, Scott A" uniqKey="Merkle S" first="Scott A" last="Merkle">Scott A. Merkle</name>
</author>
</analytic>
<series>
<title level="j">Plant biotechnology journal</title>
<idno type="eISSN">1467-7652</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Blotting, Western (MeSH)</term>
<term>Cinnamates (pharmacology)</term>
<term>Drug Resistance (MeSH)</term>
<term>Hygromycin B (analogs & derivatives)</term>
<term>Hygromycin B (pharmacology)</term>
<term>Lyases (genetics)</term>
<term>Organomercury Compounds (metabolism)</term>
<term>Oxidoreductases (genetics)</term>
<term>Phenylmercuric Acetate (metabolism)</term>
<term>Phenylmercuric Acetate (pharmacology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Shoots (genetics)</term>
<term>Plant Shoots (growth & development)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Rhizobium (genetics)</term>
<term>Transformation, Genetic (MeSH)</term>
<term>Transgenes (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétate de phénylmercure (métabolisme)</term>
<term>Acétate de phénylmercure (pharmacologie)</term>
<term>Cinnamates (pharmacologie)</term>
<term>Composés organiques du mercure (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Hygromycine (analogues et dérivés)</term>
<term>Hygromycine (pharmacologie)</term>
<term>Lyases (génétique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Pousses de plante (croissance et développement)</term>
<term>Pousses de plante (génétique)</term>
<term>Rhizobium (génétique)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Résistance aux substances (MeSH)</term>
<term>Technique de Western (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Transgènes (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Hygromycin B</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Lyases</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Organomercury Compounds</term>
<term>Phenylmercuric Acetate</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cinnamates</term>
<term>Hygromycin B</term>
<term>Phenylmercuric Acetate</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Hygromycine</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Pousses de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Shoots</term>
<term>Populus</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Lyases</term>
<term>Oxidoreductases</term>
<term>Populus</term>
<term>Pousses de plante</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acétate de phénylmercure</term>
<term>Composés organiques du mercure</term>
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acétate de phénylmercure</term>
<term>Cinnamates</term>
<term>Hygromycine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Blotting, Western</term>
<term>Drug Resistance</term>
<term>Plants, Genetically Modified</term>
<term>Polymerase Chain Reaction</term>
<term>Transformation, Genetic</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Résistance aux substances</term>
<term>Technique de Western</term>
<term>Transformation génétique</term>
<term>Transgènes</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Eastern cottonwood (Populus deltoides Bartr. ex Marsh.) trees were engineered to express merA (mercuric ion reductase) and merB (organomercury lyase) transgenes in order to be used for the phytoremediation of mercury-contaminated soils. Earlier studies with Arabidopsis thaliana and Nicotiana tabacum showed that this gene combination resulted in more efficient detoxification of organomercurial compounds than did merB alone, but neither species is optimal for long-term field applications. Leaf discs from in vitro-grown merA, nptII (neomycin phosphotransferase) transgenic cottonwood plantlets were inoculated with Agrobacterium tumefaciens strain C58 carrying the merB and hygromycin resistance (hptII) genes. Polymerase chain reaction of shoots regenerated from the leaf discs under selection indicated an overall transformation frequency of 20%. Western blotting of leaves showed that MerA and MerB proteins were produced. In vitro-grown merA/merB plants were highly resistant to phenylmercuric acetate, and detoxified organic mercury compounds two to three times more rapidly than did controls, as shown by mercury volatilization assay. This indicates that these cottonwood trees are reasonable candidates for the remediation of organomercury-contaminated sites.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17309680</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>05</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1467-7652</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2007</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant biotechnology journal</Title>
<ISOAbbreviation>Plant Biotechnol J</ISOAbbreviation>
</Journal>
<ArticleTitle>Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury.</ArticleTitle>
<Pagination>
<MedlinePgn>254-62</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Eastern cottonwood (Populus deltoides Bartr. ex Marsh.) trees were engineered to express merA (mercuric ion reductase) and merB (organomercury lyase) transgenes in order to be used for the phytoremediation of mercury-contaminated soils. Earlier studies with Arabidopsis thaliana and Nicotiana tabacum showed that this gene combination resulted in more efficient detoxification of organomercurial compounds than did merB alone, but neither species is optimal for long-term field applications. Leaf discs from in vitro-grown merA, nptII (neomycin phosphotransferase) transgenic cottonwood plantlets were inoculated with Agrobacterium tumefaciens strain C58 carrying the merB and hygromycin resistance (hptII) genes. Polymerase chain reaction of shoots regenerated from the leaf discs under selection indicated an overall transformation frequency of 20%. Western blotting of leaves showed that MerA and MerB proteins were produced. In vitro-grown merA/merB plants were highly resistant to phenylmercuric acetate, and detoxified organic mercury compounds two to three times more rapidly than did controls, as shown by mercury volatilization assay. This indicates that these cottonwood trees are reasonable candidates for the remediation of organomercury-contaminated sites.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lyyra</LastName>
<ForeName>Satu</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA. satu.lyyra@iki.fi</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meagher</LastName>
<ForeName>Richard B</ForeName>
<Initials>RB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Tehryung</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Heaton</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Montello</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Balish</LastName>
<ForeName>Rebecca S</ForeName>
<Initials>RS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Merkle</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Biotechnol J</MedlineTA>
<NlmUniqueID>101201889</NlmUniqueID>
<ISSNLinking>1467-7644</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002934">Cinnamates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009941">Organomercury Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3XQ2233B0B</RegistryNumber>
<NameOfSubstance UI="D006921">Hygromycin B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3YJY415DDI</RegistryNumber>
<NameOfSubstance UI="C026273">hygromycin A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.16.-</RegistryNumber>
<NameOfSubstance UI="C021551">mercuric reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.-</RegistryNumber>
<NameOfSubstance UI="D008190">Lyases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.99.1.2</RegistryNumber>
<NameOfSubstance UI="C050953">alkylmercury lyase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>OSX88361UX</RegistryNumber>
<NameOfSubstance UI="D010662">Phenylmercuric Acetate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002934" MajorTopicYN="N">Cinnamates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004351" MajorTopicYN="N">Drug Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006921" MajorTopicYN="N">Hygromycin B</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008190" MajorTopicYN="N">Lyases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009941" MajorTopicYN="N">Organomercury Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010662" MajorTopicYN="N">Phenylmercuric Acetate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17309680</ArticleId>
<ArticleId IdType="pii">PBI236</ArticleId>
<ArticleId IdType="doi">10.1111/j.1467-7652.2006.00236.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Balish, Rebecca S" sort="Balish, Rebecca S" uniqKey="Balish R" first="Rebecca S" last="Balish">Rebecca S. Balish</name>
<name sortKey="Heaton, Andrew" sort="Heaton, Andrew" uniqKey="Heaton A" first="Andrew" last="Heaton">Andrew Heaton</name>
<name sortKey="Kim, Tehryung" sort="Kim, Tehryung" uniqKey="Kim T" first="Tehryung" last="Kim">Tehryung Kim</name>
<name sortKey="Meagher, Richard B" sort="Meagher, Richard B" uniqKey="Meagher R" first="Richard B" last="Meagher">Richard B. Meagher</name>
<name sortKey="Merkle, Scott A" sort="Merkle, Scott A" uniqKey="Merkle S" first="Scott A" last="Merkle">Scott A. Merkle</name>
<name sortKey="Montello, Paul" sort="Montello, Paul" uniqKey="Montello P" first="Paul" last="Montello">Paul Montello</name>
</noCountry>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Lyyra, Satu" sort="Lyyra, Satu" uniqKey="Lyyra S" first="Satu" last="Lyyra">Satu Lyyra</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003C19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003C19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17309680
   |texte=   Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17309680" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020